机器学习的最新进展显着改善了对源代码数据的理解,并在许多下游任务上取得了良好的表现。像GitHub这样的开源存储库使用丰富的未标记代码数据启用此过程。但是,缺乏高质量标记的数据在很大程度上阻碍了几个相关任务的进度,例如程序翻译,摘要,合成和代码搜索。本文介绍了XLCOST,跨语言代码摘要数据集,这是一种用于跨语言代码智能的新基准数据集。我们的数据集包含来自8种语言(7种常用编程语言和英语)的细粒并行数据,并支持10个跨语性代码任务。据我们所知,就规模和语言数量而言,它是源代码的最大并行数据集。我们还为每个任务提供了几种最先进的基线模型的性能。我们认为,这个新数据集可能是研究界的宝贵资产,并促进了跨语法代码智能的新方法的开发和验证。
translated by 谷歌翻译
Recently, Smart Video Surveillance (SVS) systems have been receiving more attention among scholars and developers as a substitute for the current passive surveillance systems. These systems are used to make the policing and monitoring systems more efficient and improve public safety. However, the nature of these systems in monitoring the public's daily activities brings different ethical challenges. There are different approaches for addressing privacy issues in implementing the SVS. In this paper, we are focusing on the role of design considering ethical and privacy challenges in SVS. Reviewing four policy protection regulations that generate an overview of best practices for privacy protection, we argue that ethical and privacy concerns could be addressed through four lenses: algorithm, system, model, and data. As an case study, we describe our proposed system and illustrate how our system can create a baseline for designing a privacy perseverance system to deliver safety to society. We used several Artificial Intelligence algorithms, such as object detection, single and multi camera re-identification, action recognition, and anomaly detection, to provide a basic functional system. We also use cloud-native services to implement a smartphone application in order to deliver the outputs to the end users.
translated by 谷歌翻译
Differentiable rendering aims to compute the derivative of the image rendering function with respect to the rendering parameters. This paper presents a novel algorithm for 6-DoF pose estimation through gradient-based optimization using a differentiable rendering pipeline. We emphasize two key contributions: (1) instead of solving the conventional 2D to 3D correspondence problem and computing reprojection errors, images (rendered using the 3D model) are compared only in the 2D feature space via sparse 2D feature correspondences. (2) Instead of an analytical image formation model, we compute an approximate local gradient of the rendering process through online learning. The learning data consists of image features extracted from multi-viewpoint renders at small perturbations in the pose neighborhood. The gradients are propagated through the rendering pipeline for the 6-DoF pose estimation using nonlinear least squares. This gradient-based optimization regresses directly upon the pose parameters by aligning the 3D model to reproduce a reference image shape. Using representative experiments, we demonstrate the application of our approach to pose estimation in proximity operations.
translated by 谷歌翻译
Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In particular, there are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers. Recent work has begun to introduce such benchmark datasets for several tasks. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. We follow the blueprint of the Spoken Language Understanding Evaluation (SLUE) benchmark suite. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will be publishing for each task (i) annotations for a relatively small fine-tuning set, (ii) annotated development and test sets, and (iii) baseline models for easy reproducibility and comparisons. In this work, we present the details of data collection and annotation and the performance of the baseline models. We also perform sensitivity analysis of pipeline models' performance (speech recognizer + text model) to the speech recognition accuracy, using more than 20 state-of-the-art speech recognition models.
translated by 谷歌翻译
Continual Learning, also known as Lifelong or Incremental Learning, has recently gained renewed interest among the Artificial Intelligence research community. Recent research efforts have quickly led to the design of novel algorithms able to reduce the impact of the catastrophic forgetting phenomenon in deep neural networks. Due to this surge of interest in the field, many competitions have been held in recent years, as they are an excellent opportunity to stimulate research in promising directions. This paper summarizes the ideas, design choices, rules, and results of the challenge held at the 3rd Continual Learning in Computer Vision (CLVision) Workshop at CVPR 2022. The focus of this competition is the complex continual object detection task, which is still underexplored in literature compared to classification tasks. The challenge is based on the challenge version of the novel EgoObjects dataset, a large-scale egocentric object dataset explicitly designed to benchmark continual learning algorithms for egocentric category-/instance-level object understanding, which covers more than 1k unique main objects and 250+ categories in around 100k video frames.
translated by 谷歌翻译
Large language models have recently attracted significant attention due to their impressive performance on a variety of tasks. ChatGPT developed by OpenAI is one such implementation of a large, pre-trained language model that has gained immense popularity among early adopters, where certain users go to the extent of characterizing it as a disruptive technology in many domains. Understanding such early adopters' sentiments is important because it can provide insights into the potential success or failure of the technology, as well as its strengths and weaknesses. In this paper, we conduct a mixed-method study using 10,732 tweets from early ChatGPT users. We first use topic modelling to identify the main topics and then perform an in-depth qualitative sentiment analysis of each topic. Our results show that the majority of the early adopters have expressed overwhelmingly positive sentiments related to topics such as Disruptions to software development, Entertainment and exercising creativity. Only a limited percentage of users expressed concerns about issues such as the potential for misuse of ChatGPT, especially regarding topics such as Impact on educational aspects. We discuss these findings by providing specific examples for each topic and then detail implications related to addressing these concerns for both researchers and users.
translated by 谷歌翻译
We apply reinforcement learning (RL) to robotics. One of the drawbacks of traditional RL algorithms has been their poor sample efficiency. One approach to improve it is model-based RL. We learn a model of the environment, essentially its dynamics and reward function, use it to generate imaginary trajectories and backpropagate through them to update the policy, exploiting the differentiability of the model. Intuitively, learning more accurate models should lead to better performance. Recently, there has been growing interest in developing better deep neural network based dynamics models for physical systems, through better inductive biases. We focus on robotic systems undergoing rigid body motion. We compare two versions of our model-based RL algorithm, one which uses a standard deep neural network based dynamics model and the other which uses a much more accurate, physics-informed neural network based dynamics model. We show that, in environments that are not sensitive to initial conditions, model accuracy matters only to some extent, as numerical errors accumulate slowly. In these environments, both versions achieve similar average-return, while the physics-informed version achieves better sample efficiency. We show that, in environments that are sensitive to initial conditions, model accuracy matters a lot, as numerical errors accumulate fast. In these environments, the physics-informed version achieves significantly better average-return and sample efficiency. We show that, in challenging environments, where we need a lot of samples to learn, physics-informed model-based RL can achieve better asymptotic performance than model-free RL, by generating accurate imaginary data, which allows it to perform many more policy updates. In these environments, our physics-informed model-based RL approach achieves better average-return than Soft Actor-Critic, a SOTA model-free RL algorithm.
translated by 谷歌翻译
Curiosity for machine agents has been a focus of lively research activity. The study of human and animal curiosity, particularly specific curiosity, has unearthed several properties that would offer important benefits for machine learners, but that have not yet been well-explored in machine intelligence. In this work, we conduct a comprehensive, multidisciplinary survey of the field of animal and machine curiosity. As a principal contribution of this work, we use this survey as a foundation to introduce and define what we consider to be five of the most important properties of specific curiosity: 1) directedness towards inostensible referents, 2) cessation when satisfied, 3) voluntary exposure, 4) transience, and 5) coherent long-term learning. As a second main contribution of this work, we show how these properties may be implemented together in a proof-of-concept reinforcement learning agent: we demonstrate how the properties manifest in the behaviour of this agent in a simple non-episodic grid-world environment that includes curiosity-inducing locations and induced targets of curiosity. As we would hope, our example of a computational specific curiosity agent exhibits short-term directed behaviour while updating long-term preferences to adaptively seek out curiosity-inducing situations. This work, therefore, presents a landmark synthesis and translation of specific curiosity to the domain of machine learning and reinforcement learning and provides a novel view into how specific curiosity operates and in the future might be integrated into the behaviour of goal-seeking, decision-making computational agents in complex environments.
translated by 谷歌翻译
This paper studies audio-visual suppression for egocentric videos -- where the speaker is not captured in the video. Instead, potential noise sources are visible on screen with the camera emulating the off-screen speaker's view of the outside world. This setting is different from prior work in audio-visual speech enhancement that relies on lip and facial visuals. In this paper, we first demonstrate that egocentric visual information is helpful for noise suppression. We compare object recognition and action classification based visual feature extractors, and investigate methods to align audio and visual representations. Then, we examine different fusion strategies for the aligned features, and locations within the noise suppression model to incorporate visual information. Experiments demonstrate that visual features are most helpful when used to generate additive correction masks. Finally, in order to ensure that the visual features are discriminative with respect to different noise types, we introduce a multi-task learning framework that jointly optimizes audio-visual noise suppression and video based acoustic event detection. This proposed multi-task framework outperforms the audio only baseline on all metrics, including a 0.16 PESQ improvement. Extensive ablations reveal the improved performance of the proposed model with multiple active distractors, over all noise types and across different SNRs.
translated by 谷歌翻译
Transformers are among the state of the art for many tasks in speech, vision, and natural language processing, among others. Self-attentions, which are crucial contributors to this performance have quadratic computational complexity, which makes training on longer input sequences challenging. Prior work has produced state-of-the-art transformer variants with linear attention, however, current models sacrifice performance to achieve efficient implementations. In this work, we develop a novel linear transformer by examining the properties of the key-query product within self-attentions. Our model outperforms state of the art approaches on speech recognition and speech summarization, resulting in 1 % absolute WER improvement on the Librispeech-100 speech recognition benchmark and a new INTERVIEW speech recognition benchmark, and 5 points on ROUGE for summarization with How2.
translated by 谷歌翻译